Login / Signup

Bioadhesive Nanoaggregates Based on Polyaspartamide-g-C18/DOPA for Wound Healing.

Sooyoun LimMinh Phuong NguyenYoungjin ChoiJaeyoon KimDukjoon Kim
Published in: Biomacromolecules (2017)
Biocompatible adhesive nanoaggregates were synthesized based on polyaspartamide copolymers grafted with octadecylamine (C18) and 3,4-dihydroxyphenylalanine (DOPA), and their adhesive properties were investigated with regard to wound healing. The chemical structure and morphology of the synthesized polyaspartamide-g-C18/DOPA nanoaggregates were analyzed using 1H-nuclear magnetic resonance spectroscopy (1H NMR), dynamic light scattering (DLS), and transmission electron microscope (TEM). The in vitro adhesive energy was up to 31.04 J m-2 for poly(dimethylacrylamide) gel substrates and 0.1209 MPa for mouse skin, and the in vivo wound breaking strength after 48 h was 1.8291 MPa for C57BL/6 mouse. The MTT assay demonstrated that the synthesized polymeric nanoaggregates were nontoxic. The polyaspartamide-g-C18/DOPA nanoaggregates were in vivo tested to mouse model and demonstrated successful skin adhesion, as the mouse skin was perfectly cured in their dermis within 6 d. As this material has biocompatibility and enough adhesive strength for wound closure, it is expected to be applied as a new type of bioadhesive agent in the human body.
Keyphrases