A hierarchy of corticospinal plasticity in human hand and forearm muscles.
K M Riashad FoysalStuart N BakerPublished in: The Journal of physiology (2019)
The ability of the motor system to show plastic change underlies skill learning and also permits recovery after injury. One puzzling observation is that, after stroke, upper limb flexor muscles show good recovery but extensors remain weak, with this being a major contributor to residual disability. We hypothesized that there might be differences in potential for plasticity across hand and forearm muscles. In the present study, we investigated this using two protocols based on transcranial magnetic brain stimulation (TMS) in healthy human subjects. Baseline TMS responses were recorded from two intrinsic hand muscles: flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC). In the first study, paired associative stimulation (PAS) was delivered by pairing motor point stimulation of FDS or EDC with TMS. Responses were then remeasured. Increases were greatest in the hand muscles, smaller in FDS and non-significant in EDC, irrespective of whether stimulation of FDS or EDC was used. In the second study, intermittent theta-burst rapid rate TMS was applied instead of PAS. In this case, all muscles showed similar increases in TMS responses. We conclude that the potential to show plastic changes in motor cortical output has the gradient: hand muscles > flexors > extensors. However, this was only seen in a protocol that requires integration of sensory input (PAS) and not when plasticity was induced purely by cortical stimulation (rapid rate TMS). This observation may relate to why functional recovery tends to favour flexor and hand muscles over extensors.
Keyphrases
- transcranial magnetic stimulation
- high frequency
- endothelial cells
- upper limb
- randomized controlled trial
- oxidative stress
- working memory
- induced pluripotent stem cells
- brain injury
- high glucose
- resting state
- high intensity
- diabetic rats
- mass spectrometry
- high speed
- tandem mass spectrometry
- simultaneous determination