Dynamic Contrast-Enhanced MRI of OATP Dysfunction in Diabetes.
Dorela D Shuboni-MulliganMaciej ParysBarbara Blanco-FernandezChristiane L MallettRegina SchnegelbergerMarilia TakadaShatadru ChakravartyBruno HagenbuchErik M ShapiroPublished in: Diabetes (2018)
Diabetes is associated with hepatic metabolic dysfunction predisposing patients to drug-induced liver injury. Mouse models of type 2 diabetes (T2D) have dramatically reduced expression of organic anion transporting polypeptide (OATP)1A1, a transporter expressed in hepatocytes and in the kidneys. The effects of diabetes on OATP1B2 expression are less studied and less consistent. OATP1A1 and OATP1B2 both transport endogenous substrates such as bile acids and hormone conjugates as well as numerous drugs including gadoxetate disodium (Gd-EOB-DTPA). As master pharmacokinetic regulators, the altered expression of OATPs in diabetes could have a profound and clinically significant influence on drug therapies. Here, we report a method to noninvasively measure OATP activity in T2D mice by quantifying the transport of hepatobiliary-specific gadolinium-based contrast agents (GBCAs) within the liver and kidneys using dynamic contrast-enhanced MRI (DCE-MRI). By comparing GBCA uptake in control and OATP knockout mice, we confirmed liver clearance of the hepatobiliary-specific GBCAs, Gd-EOB-DTPA, and gadobenate dimeglumine, primarily though OATP transporters. Then, we measured a reduction in the hepatic uptake of these hepatobiliary GBCAs in T2D ob/ob mice, which mirrored significant reductions in the mRNA and protein expression of OATP1A1 and OATP1B2. As these GBCAs are U.S. Food and Drug Administration-approved agents and DCE-MRI is a standard clinical protocol, studies to determine OATP1B1/1B3 deficiencies in human individuals with diabetes can be easily envisioned.
Keyphrases
- contrast enhanced
- type diabetes
- cardiovascular disease
- magnetic resonance imaging
- glycemic control
- poor prognosis
- magnetic resonance
- diffusion weighted imaging
- binding protein
- computed tomography
- oxidative stress
- mouse model
- end stage renal disease
- endothelial cells
- newly diagnosed
- chronic kidney disease
- drug delivery
- intellectual disability
- climate change
- long non coding rna
- adipose tissue
- metabolic syndrome
- patient reported outcomes
- patient reported
- case control