Login / Signup

Merging of Light/Dark Palladium Catalytic Cycles Enables Multicomponent Tandem Alkyl Heck/Tsuji-Trost Homologative Amination Reaction toward Allylic Amines.

Nikita KvasovsJian FangFedor S KliuevVladimir Gevorgyan
Published in: Journal of the American Chemical Society (2023)
A visible light-induced palladium-catalyzed homologative three-component synthesis of allylic amines has been developed. This protocol proceeds via a unique mechanism involving two distinct cycles enabled by the same Pd(0) catalyst: a visible light-induced hybrid radical alkyl Heck reaction between 1,1-dielectrophile and styrene, followed by the "in dark" classical Tsuji-Trost-type allylic substitution reaction. This method works well with a broad range of primary and secondary amines, aryl alkenes, dielectrophiles, and in complex settings. The regiochemistry of the obtained products is primarily governed by the structure of 1,1-dielectrophile. Involvement of π-allyl palladium intermediates allowed for the control of stereoselectivity, which has been demonstrated with up to 95:5 er.
Keyphrases
  • ionic liquid
  • reduced graphene oxide
  • randomized controlled trial
  • visible light
  • electron transfer
  • room temperature
  • gold nanoparticles
  • highly efficient
  • estrogen receptor