Login / Signup

Paraquat but not diquat induces TGF-β expression and thus activates calcium-NFAT axis for epithelial-mesenchymal transition.

Wenyu YangXinrun MaYong ZhuXiaoxiao MengRui TianZhengfeng Yang
Published in: Toxicology research (2021)
Paraquat (PQ) and diquat (DQ), two highly efficient herbicides sharing similar chemical backbone, both induce reactive oxygen species and are highly toxic to humans and livestock, however, PQ but not DQ poisoning result in pulmonary fibrosis, the leading cause of high mortality rate in patients suffering PQ toxicity. Understanding the unique mechanism of PQ different from DQ therefore would provide potential strategies to reduce PQ-induced pulmonary fibrosis. Here, we identified that PQ but not DQ continuously upregulates TGF-β expression in alveolar type II (AT II) cells. Importantly, such high expression of TGF-β increases cytosolic calcium levels and further promotes the activation of calcineurin-NFAT axis. TGF-β mainly activates NFATc1 and NFATc2, but not NFATc3 or NFATc4. Administration of the inhibitors targeting cytosolic calcium or calcineurin largely reverses PQ-induced epithelial-mesenchymal transition (EMT), whereas DQ has little effects on activation of NFAT and EMT. Ultimately, PQ poisoned patients exhibit significantly reduced blood calcium levels compared to DQ poisoning, possibly via the large usage of calcium by AT II cells. All in all, we found a vicious cycle that the upregulated TGF-β in PQ-induced EMT further aggravates EMT via promotion of the calcium-calcineurin axis, which could be potential drug targets for treating PQ-induced pulmonary fibrosis.
Keyphrases