Downregulation of long noncoding RNA TP73-AS1 expression confers resistance to temozolomide in human glioblastoma cells.
Ryo OkamotoKoki ToyaYoko OginoAkira SatoPublished in: Nucleosides, nucleotides & nucleic acids (2023)
Glioblastoma multiforme (GBM), the most aggressive primary malignant brain tumor, is resistant to conventional radiotherapies and chemotherapies, including temozolomide (TMZ). Overcoming GBM resistance to the chemotherapeutic agent TMZ poses an important therapeutic problem. This study established an association between the long noncoding RNA TP73-AS1 and TMZ sensitivity regulation in human GBM cells (U87MG). Transcriptomic analysis revealed that TP73-AS1 expression was reduced in TMZ-resistant U87MG RT100 cells compared to that in parental U87MG cells. Additionally, TP73-AS1 knockdown in parental U87MG cells decreased their sensitivity to TMZ. Overall, these findings suggest that TP73-AS1 functions as a regulator of TMZ sensitivity in GBM cells.