Login / Signup

Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling.

Oliver A StoneJames G CarterP Charles LinEwa PaleologMaria J C MachadoDavid Owen Bates
Published in: The Journal of physiology (2017)
Signalling through vascular endothelial growth factor (VEGF) receptors and the tyrosine kinase with IgG and EGF domains-2 (Tie2) receptor by angiopoietins is required in combination with blood flow for the formation of a functional vascular network. We tested the hypothesis that VEGF and angiopoietin-1 (Ang1) contribute differentially to neovascularization induced by nitric oxide (NO)-mediated vasodilatation, by comparing the phenotype of new microvessels in the mesentery during induction of vascular remodelling by over-expression of endothelial nitric oxide synthase in the fat pad of the adult rat mesentery during inhibition of angiopoietin signalling with soluble Tie2 (sTie2) and VEGF signalling with soluble Fms-like tyrosine kinase receptor-1 (sFlt1). We found that NO-mediated angiogenesis was blocked by inhibition of VEGF with sFlt1 (from 881 ± 98% increase in functional vessel area to 279 ± 72%) and by inhibition of angiopoietin with sTie2 (to 337 ± 67%). Exogenous angiopoietin-1 was required to induce arteriolargenesis (8.6 ± 1.3% of vessels with recruitment of vascular smooth muscle cells; VSMCs) in the presence of enhanced flow. sTie2 and sFlt1 both inhibited VSMC recruitment (both 0%), and VEGF inhibition increased pericyte recruitment to newly formed vessels (from 27 ± 2 to 54 ± 3% pericyte ensheathment). We demonstrate that a fine balance of VEGF and angiopoietin signalling is required for the formation of a functional vascular network. Endogenous VEGF signalling prevents excess neovessel pericyte coverage, and is required for VSMC recruitment during increased nitric oxide-mediated vasodilatation and angiopoietin signalling (NO-Tie-mediated arteriogenesis). Therapeutic vascular remodelling paradigms may therefore require treatments that modulate blood flow to utilize endogenous VEGF, in combination with exogenous Ang1, for effective neovascularization.
Keyphrases