Login / Signup

Micro-RNA-27a/b negatively regulates hepatic gluconeogenesis by targeting FOXO1.

Shuyue WangHuihan AiLei LiuXiaojun ZhangFeng GaoLihua ZhengJingwen YiLuguo SunChunlei YuHuiying ZhaoYuxin Li
Published in: American journal of physiology. Endocrinology and metabolism (2019)
In the context of hepatic insulin resistance, hepatic gluconeogenesis is abnormally increased, which results in increased hepatic glucose production and hyperglycemia, but the underlying mechanisms remain to be fully elucidated. Micro-RNAs (miRNAs) have been identified as critical regulators of diabetes and other metabolic disorders. In this study, we found that the expressions of miRNA-27 family members miRNA-27a and miRNA-27b (miR-27a/b) decreased significantly in the livers of diabetic mice. Moreover, the levels of miR-27a/b increased in the serum of patients with type 2 diabetes. Our present results showed that inhibition of miR-27a/b expression led to increased hepatic protein levels of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase and enhanced hepatic gluconeogenesis in vitro and in vivo. Overexpression of miR-27a/b suppressed hepatic glucose output and alleviated hyperglycemia in diabetic mice. Further study revealed that forkhead box O1 (FOXO1) is a downstream target of miR-27a/b. Taken together, we found novel evidence suggesting that miR-27a/b contributes to hepatic gluconeogenesis through targeting FOXO1 and provided novel mechanistic insight into the pathophysiology of insulin resistance.
Keyphrases