Organ-on-a-Chip Systems for Modeling Pathological Tissue Morphogenesis Associated with Fibrosis and Cancer.
Kristen L HaywardSonya KouthouridisBoyang ZhangPublished in: ACS biomaterials science & engineering (2020)
Tissue building does not occur exclusively during development. Even after a whole body is built from a single cell, tissue building can occur to repair and regenerate tissues of the adult body. This confers resilience and enhanced survival to multicellular organisms. However, this resiliency comes at a cost, as the potential for misdirected tissue building creates vulnerability to organ deformation and dysfunction-the hallmarks of disease. Pathological tissue morphogenesis is associated with fibrosis and cancer, which are the leading causes of morbidity and mortality worldwide. Despite being the priority of research for decades, scientific understanding of these diseases is limited and existing therapies underdeliver the desired benefits to patient outcomes. This can largely be attributed to the use of two-dimensional cell culture and animal models that insufficiently recapitulate human disease. Through the synergistic union of biological principles and engineering technology, organ-on-a-chip systems represent a powerful new approach to modeling pathological tissue morphogenesis, one with the potential to yield better insights into disease mechanisms and improved therapies that offer better patient outcomes. This Review will discuss organ-on-a-chip systems that model pathological tissue morphogenesis associated with (1) fibrosis in the context of injury-induced tissue repair and aging and (2) cancer.