Login / Signup

Functional analysis of the odorant receptor coreceptor in odor detection in Grapholita molesta (lepidoptera: Tortricidae).

Xiu-Lin ChenBo-Liao LiYu-Xin ChenGuang-Wei LiJun-Xiang Wu
Published in: Archives of insect biochemistry and physiology (2021)
The olfactory system must detect and discriminate various semiochemicals in the environment. In response to such diversity, insects have evolved a family of odorant-gated ion channels composed of a common receptor (coreceptor, Orco) and a ligand-binding tuning odorant receptor (OR) that confers odour specificity. This study aims to examine the expression pattern of Orco gene of Grapholita molesta (GmolOrco) and to elucidate the role of GmolOrco in detecting G. molesta sex pheromone and green leaf volatiles by using gene silencing via RNA interference (RNAi) coupled antennal electrophysiological (EAG). Multiple sequence alignment showed that GmolOrco shared high sequence similarities with the Orco ortholog of lepidopterans. The results of real-time quantitative PCR detection demonstrated that GmolOrco was predominantly expressed in adult antennae and had the highest expression quantity in adult period among the different developmental stages. Compared with the noninjected controls, GmolOrco expression in GmolOrcodouble-stranded RNA (dsRNA)-injected males was reduced to 39.92% and that in females was reduced to 40.43%. EAG assays showed that the responses of GmolOrco-dsRNA injected males to sex pheromones (Z)-8-dodecenyl acetate (Z8-12:OAc) and (Z)-8-dodecenyl alcohol (Z8-12:OH) were significantly reduced, and the GmolOrco-dsRNA-injected female to green leaf volatile (Z)-3-hexenyl acetate also significantly declined. We inferred that Orco-mediated olfaction was different in male and female G. molesta adults and was mainly involved in recognizing the sex pheromones released by female moths.
Keyphrases
  • binding protein
  • poor prognosis
  • real time pcr
  • high throughput
  • loop mediated isothermal amplification
  • dna methylation
  • liquid chromatography