Role of α-Dicarbonyl Compounds in the Inhibition Effect of Reducing Sugars on the Formation of 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.
Zhonghui HanBing LiuZhiyan NiuYan ZhangJianxin GaoLei ShiShujun WangShuo WangPublished in: Journal of agricultural and food chemistry (2017)
The effect of reducing sugars on formation of PhIP in fried pork was investigated, and the underlying mechanisms were revealed by studying the reaction pathways between α-dicarbonyl compounds (α-DCs) and PhIP. The addition of reducing sugars (such as glucose) greatly reduced the amount of PhIP in fried pork from 15.5 ng/g to less than 1.0 ng/g. The amount of PhIP decreased significantly with an increasing level of added α-DCs in model systems. Similarly, the addition of methylglyoxal (MGO) decreased significantly the levels of phenylalanine (Phe) and creatinine (Crn) but increased significantly the level of phenylacetaldehyde (PEA). 2-Amino-1-methyl-5-(2-oxopropylidene)-imidazol-4-one and N-(1-methyl-4-oxoimidazolidin-2-ylidene) amino propionic acids were identified in MGO/Crn and MGO/Crn/Phe model systems and fried pork with glucose. These results revealed that the degradation products of reducing sugars-α-DCs-play an important role in inhibiting formation of PhIP by reacting with key precursors of PhIP and itself.