Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFASs) and Association between the Placental Transfer Efficiencies and Dissociation Constant of Serum Proteins-PFAS Complexes.
Ke GaoTaifeng ZhuangXian LiuJianjie FuJingxing ZhangJie FuLiguo WangAi-Qian ZhangYong LiangMaoyong SongGui-Bin JiangPublished in: Environmental science & technology (2019)
Information on placental transfer and adverse outcomes of short-chain per- and polyfluoroalkyl substance (PFASs) is limited, and factors responsible for PFAS placental transfer are still unclear. In the present study, concentrations of 21 PFASs were analyzed in 132 paired maternal and cord serum samples collected from residents in Beijing, China, and the placental transfer efficiency (PTE) of each PFAS was calculated. PTEs of short-chain perfluoroalkyl acids (PFAAs), including PFBA (146%), PFBS (97%), PFPeA (118%), and PFHxA (110%), were first reported, and a complete U-shaped trend of PTEs from C4 to C13 of perfluoroalkyl carboxylic acids (PFCAs) was obtained. Positive association between maternal weight and PTE of perfluorooctanesulfonate (PFOS) ( p < 0.05) and negative association between maternal PFBA concentration and birth length ( p < 0.01) were observed. Using in vitro experiments, we further determined equilibrium dissociation constants ( Kds) of human serum albumin (HSA)-PFAS complexes ( Kd-HP), serum proteins-PFAS complexes ( Kd-SP), and liver-fatty acid binding protein (L-FABP)-PFAS complexes ( Kd-LP) and found that they were all significantly correlated with PTEs of PFASs. The correlation coefficient was 0.92, 0.89, and 0.86, respectively ( p < 0.01 in all three tests), suggesting that Kds of protein (serum)-PFAS complexes can play an important role in trans-placental transfer of PFASs in human and Kd-HP plays a pivotal role.
Keyphrases
- binding protein
- electron transfer
- birth weight
- pregnancy outcomes
- fatty acid
- endothelial cells
- human serum albumin
- pregnant women
- gestational age
- air pollution
- magnetic resonance imaging
- weight loss
- particulate matter
- healthcare
- induced pluripotent stem cells
- molecular dynamics
- amino acid
- social media
- health information