Login / Signup

Improvement of thermotolerance in Lachancea thermotolerans using a bacterial selection pressure.

Nerve ZhouOlena P IshchukWolfgang KnechtConcetta CompagnoJure Piškur
Published in: Journal of industrial microbiology & biotechnology (2018)
The use of thermotolerant yeast strains is an important attribute for a cost-effective high temperature biofermentation processes. However, the availability of thermotolerant yeast strains remains a major challenge. Isolation of temperature resistant strains from extreme environments or the improvements of current strains are two major strategies known to date. We hypothesised that bacteria are potential "hurdles" in the life cycle of yeasts, which could influence the evolution of extreme phenotypes, such as thermotolerance. We subjected a wild-type yeast, Lachancea thermotolerans to six species of bacteria sequentially for several generations. After coevolution, we observed that three replicate lines of yeasts grown in the presence of bacteria grew up to 37 °C whereas the controls run in parallel without bacteria could only grow poorly at 35 °C retaining the ancestral mesophilic trait. In addition to improvement of thermotolerance, our results show that the fermentative ability was also elevated, making the strains more ideal for the alcoholic fermentation process because the overall productivity and ethanol titers per unit volume of substrate consumed during the fermentation process was increased. Our unique method is attractive for the development of thermotolerant strains or to augment the available strain development approaches for high temperature industrial biofermentation.
Keyphrases
  • saccharomyces cerevisiae
  • escherichia coli
  • high temperature
  • climate change
  • wild type
  • wastewater treatment
  • oxidative stress
  • lactic acid
  • human health
  • genetic diversity