Login / Signup

Overproduction of IFNγ by Cbl-b-Deficient CD8+ T Cells Provides Resistance against Regulatory T Cells and Induces Potent Antitumor Immunity.

SeongJun HanZhe Qi LiuDouglas C ChungMichael St PaulCarlos R Garcia-BatresAzin SayadAlisha R ElfordMatthew J GoldNatasha GrimshawPamela S Ohashi
Published in: Cancer immunology research (2022)
Regulatory T cells (Treg) are an integral component of the adaptive immune system that negatively affect antitumor immunity. Here, we investigated the role of the E3 ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) in establishing CD8+ T-cell resistance to Treg-mediated suppression to enhance antitumor immunity. Transcriptomic analyses suggested that Cbl-b regulates pathways associated with cytokine signaling and cellular proliferation. We showed that the hypersecretion of IFNγ by Cbl-b-deficient CD8+ T cells selectively attenuated CD8+ T-cell suppression by Tregs. Although IFNγ production by Cbl-b-deficient T cells contributed to phenotypic alterations in Tregs, the cytokine did not attenuate the suppressive function of Tregs. Instead, IFNγ had a profound effect on CD8+ T cells by directly upregulating interferon-stimulated genes and modulating T-cell activation. In murine models of adoptive T-cell therapy, Cbl-b-deficient T cells elicited superior antitumor immune response. Furthermore, Cbl-b-deficient CD8+ T cells were less susceptible to suppression by Tregs in the tumor through the effects of IFNγ. Collectively, this study demonstrates that the hypersecretion of IFNγ serves as a key mechanism by which Cbl-b-deficient CD8+ T cells are rendered resistant to Tregs. See related Spotlight by Wolf and Baier, p. 370.
Keyphrases
  • dendritic cells
  • regulatory t cells
  • immune response
  • cell therapy
  • signaling pathway
  • stem cells
  • gene expression
  • mesenchymal stem cells
  • mass spectrometry
  • bone marrow
  • inflammatory response