Login / Signup

Using Electrospun AgNW/P(VDF-TrFE) Composite Nanofibers to Create Transparent and Wearable Single-Electrode Triboelectric Nanogenerators for Self-Powered Touch Panels.

Seung-Rok KimJu-Hyun YooJin-Woo Park
Published in: ACS applied materials & interfaces (2019)
Self-powered sensors have attracted significant interest for individual wearable device operation. Here, transparent and wearable single-electrode triboelectric nanogenerators (SETENGs) with high power generation are created using electrospun Ag nanowires (AgNWs)/poly(vinylidenefluoride-cotrifluoroethylene) [P(VDF-TrFE)] composite nanofibers (NFs). The SETENGs generate an output power density of up to 217 W/m2 with repetitive contact and separation from the surface of a latex glove. In electrospun P(VDF-TrFE) NFs, the crystalline β-phase is highly oriented by oxygen-containing functional groups on the surface of AgNWs, endowing the F-rich surface with high electron negativity and enabling efficient triboelectrification. Additionally, 80% transmittance at a light wavelength of 550 nm, mechanical stability, and durability after 10 000 cycles at 10% strain are confirmed by filling the NF pores with plasma desorption mass spectrometry. Our SETENG acts as an effective energy harvester by powering 45 light-emitting diodes and as an excellent real-time, self-powered touch panel.
Keyphrases