Morpho-anatomical, and chemical characterization of some calcareous Mediterranean red algae species.
Mona M IsmailGehan A IsmailMostafa E ElshobaryPublished in: Botanical studies (2023)
Climatic changes are anticipated to have a detrimental effect on calcifying marine species. Calcareous red algae may be especially vulnerable to seasonal variations since they are common and essential biologically, but there is little research on the morpho-anatomical, and chemical characterization of such species. This study conducted the seasonal investigation of the three dominant Mediterranean calcified red algae. Morphological and 18S rRNA analysis confirmed the identification of collected species as Corallina officinalis, Jania rubens, and Amphiroa rigida. In general, C. officinalis was represented in the four seasons and flourishing maximum in autumn (70% of total species individuals). While J. rubens species was represented in winter, autumn, and spring and completely absent in summer. A. rigida was abundant only in the summer season by 40%. A full morphological and anatomical description of these species were examined, and their chemical compositions (carbohydrate, protein, lipid, pigments, and elements content) were assessed in different seasons, where carbohydrates were the dominant accumulates followed by proteins and lipids. Pearson correlation analysis confirmed a positive correlation between salinity level and nitrogenous nutrients of the seawater with the pigment contents (phycobiliproteins, carotenoids, and chlorophyll a) of the studied seaweeds. The results proved that calcified red algae were able to deposit a mixture of calcium carbonates such as calcite, vaterite, calcium oxalate, calcite-III I calcium carbonate, and aragonite in variable forms depending on the species.