Login / Signup

Controlling cyclization pathways in palladium(ii)-catalyzed intramolecular alkene hydro-functionalization via substrate directivity.

Xin WangZi-Qi LiBinh Khanh MaiJohn A GurakJessica E XuVan T TranHui-Qi NiZhen LiuZhonglin LiuKin S YangRong XiangPeng LiuKeary M Engle
Published in: Chemical science (2020)
We report a series of palladium(ii)-catalyzed, intramolecular alkene hydrofunctionalization reactions with carbon, nitrogen, and oxygen nucleophiles to form five- and six-membered carbo- and heterocycles. In these reactions, the presence of a proximal bidentate directing group controls the cyclization pathway, dictating the ring size that is generated, even in cases that are disfavored based on Baldwin's rules and in cases where there is an inherent preference for an alternative pathway. DFT studies shed light on the origins of pathway selectivity in these processes.
Keyphrases
  • room temperature
  • reduced graphene oxide
  • density functional theory
  • ionic liquid
  • molecular dynamics simulations
  • case control
  • quantum dots