Login / Signup

Metabolic engineering of Bacillus subtilis for l-valine overproduction.

Adam W WestbrookXiang RenMurray Moo-YoungChih-Hsiung Perry Chou
Published in: Biotechnology and bioengineering (2018)
Bacillus subtilis has been commonly applied to industrial enzyme production due to its genetic tractability, "generally recognized as safe (GRAS)" status, and robust growth characteristics. In spite of its ideal attributes as a biomanufacturing platform, B. subtilis has seen limited use in the production of other value-added biochemicals. Here, we report the derivation of engineered strains of B. subtilis for l-valine overproduction using our recently developed CRISPR (clustered regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated [protein] 9) toolkit. We first manipulate the native l-valine biosynthetic pathway by relieving transcriptional and allosteric regulation, resulting in a >14-fold increase in the l-valine titer, compared to the wild-type strain. We subsequently identify and eliminate factors limiting l-valine overproduction, specifically increasing pyruvate availability and blocking the competing l-leucine and l-isoleucine biosynthetic pathways. By inactivating (a) pdhA, encoding the E1α subunit of the pyruvate dehydrogenase complex, to increase the intracellular pyruvate pool, and (b) leuA and ilvA, respectively encoding 2-isopropylmalate synthase and l-threonine dehydratase, to abolish the competing pathways, the l-valine titer reached 4.61 g/L in shake flask cultures. Our engineered l-valine-overproducing strains of B. subtilis are devoid of plasmids and do not sporulate due to the inactivation of sigF, encoding the sporulation-specific transcription factor σ F , making them attractive for large-scale l-valine production. However, acetate dissimilation was identified as limiting l-valine overproduction in ΔpdhA B. subtilis strains, and improving acetate dissimilation or identifying alternate modes of increasing pyruvate pools to enhance l-valine-overproduction should be explored.
Keyphrases
  • bacillus subtilis
  • escherichia coli
  • transcription factor
  • crispr cas
  • genome editing
  • genome wide
  • gene expression
  • small molecule
  • dna methylation
  • dna binding
  • multidrug resistant