dsRID: Editing-free in silico identification of dsRNA region using long-read RNA-seq data.
Ryo YamamotoZhiheng LiuMudra ChoudhuryXinshu Grace XiaoPublished in: bioRxiv : the preprint server for biology (2023)
Double-stranded RNAs (dsRNAs) are potent triggers of innate immune responses upon recognition by cytosolic dsRNA sensor proteins. Identification of endogenous dsRNAs helps to better understand the dsRNAome and its relevance to innate immunity related to human diseases. Here, we report dsRID (double-stranded RNA identifier), a machine learning-based method to predict dsRNA regions in silico , leveraging the power of long-read RNA-sequencing (RNA-seq) and molecular traits of dsRNAs. Using models trained with PacBio long-read RNA-seq data derived from Alzheimer's disease (AD) brain, we show that our approach is highly accurate in predicting dsRNA regions in multiple datasets. Applied to an AD cohort sequenced by the ENCODE consortium, we characterize the global dsRNA profile with potentially distinct expression patterns between AD and controls. Together, we show that dsRID provides an effective approach to capture global dsRNA profiles using long-read RNA-seq data.