Saccadic suppression measured by steady-state visual evoked potentials.
Jing ChenMatteo ValsecchiKarl R GegenfurtnerPublished in: Journal of neurophysiology (2019)
Visual sensitivity is severely impaired during the execution of saccadic eye movements. This phenomenon has been extensively characterized in human psychophysics and nonhuman primate single-neuron studies, but a physiological characterization in humans is less established. Here, we used a method based on steady-state visually evoked potential (SSVEP), an oscillatory brain response to periodic visual stimulation, to examine how saccades affect visual sensitivity. Observers made horizontal saccades back and forth, while horizontal black-and-white gratings flickered at 5-30 Hz in the background. We analyzed EEG epochs with a length of 0.3 s either centered at saccade onset (saccade epochs) or centered at fixations half a second before the saccade (fixation epochs). Compared with fixation epochs, saccade epochs showed a broadband power increase, which most likely resulted from saccade-related EEG activity. The execution of saccades, however, led to an average reduction of 57% in the SSVEP amplitude at the stimulation frequency. This result provides additional evidence for an active saccadic suppression in the early visual cortex in humans. Compared with previous functional MRI and EEG studies, an advantage of this approach lies in its capability to trace the temporal dynamics of neural activity throughout the time course of a saccade. In contrast to previous electrophysiological studies in nonhuman primates, we did not find any evidence for postsaccadic enhancement, even though simulation results show that our method would have been able to detect it. We conclude that SSVEP is a useful technique to investigate the neural correlates of visual perception during saccadic eye movements in humans. NEW & NOTEWORTHY We make fast ballistic saccadic eye movements a few times every second. At the time of saccades, visual sensitivity is severely impaired. The present study uses steady-state visually evoked potentials to reveal a neural correlate of the fine temporal dynamics of these modulations at the time of saccades in humans. We observed a strong reduction (57%) of visually driven neural activity associated with saccades but did not find any evidence for postsaccadic enhancement.