Electrically Polarized Withaferin A and Alginate-Incorporated Biphasic Calcium Phosphate Microspheres Exhibit Osteogenicity and Antibacterial Activity In Vitro.
Itishree PriyadarshiniSubhasmita SwainJanardhan Reddy KoduruTapash Ranjan RautrayPublished in: Molecules (Basel, Switzerland) (2022)
Biphasic calcium phosphate microspheres were synthesized by the water on oil emulsion method and, subsequently, withaferin A was incorporated in the microspheres to evaluate their efficacy in biomedical applications. These withaferin A and alginate-incorporated biphasic calcium phosphate (BCP-WFA-ALG) microspheres were then negatively polarized, and the formation of biphasic calcium phosphates was validated by X-ray diffraction study. Although the TSDC measurement of the BCP-WFA-ALG microspheres showed the highest current density of 5.37 nA/cm 2 , the contact angle of the specimen was found to be lower than the control BCP microspheres in all the media. The water uptake into BCP-WFA-ALG microspheres was significantly higher than in the pure BCP microspheres. MTT assay results showed that there was a significant enhancement in cell proliferation rate with the BCP-WFA-ALG composite microspheres. The osteogenic differentiation of MG 63 cells on BCP-WFA-ALG microspheres exhibited an increased expression of osteogenic marker genes in the case of the BCP-WFA-ALG composite microspheres.