Login / Signup

Kinaesthetic illusion shapes the cortical plasticity evoked by action observation.

Ambra BisioMonica BiggioLaura AvanzinoRuggeri PieroMarco Bove
Published in: The Journal of physiology (2019)
Physical practice is crucial to evoke cortical plasticity, but motor cognition techniques, such as action observation (AO), have shown their potentiality in promoting it when associated with peripheral afferent inputs, without the need of performing a movement. Here we investigated whether the combination of AO and a proprioceptive stimulation, able to evoke a kinaesthetic illusion of movement (KI), induced plasticity in the primary motor cortex (M1). In the main experiment, the role of congruency between the observed action and the illusory movement was explored together with the importance of the specificity of the sensory input modality (proprioceptive vs. tactile stimulation) to induce plasticity in M1. Further, a control experiment was carried out to assess the role of the mere kinaesthetic illusion on M1 excitability. Results showed that the combination of AO and KI evoked plasticity in M1, with an increase of the excitability immediately and up to 60 min after the conditioning protocol (P always <0.05). Notably, a significant increase in M1 excitability occurred only when the directions of the observed and illusory movements were congruent. Further, a significant positive linear relationship was found between the amount of M1 excitability increase and the vividness of the perceived illusion (P = 0.03). Finally, the tactile stimulation coupled with AO was not sufficient to induce changes in M1 excitability as well as the KI alone. All these findings indicate the importance of combining different sensory input signals to induce plasticity in M1, and that proprioception is the most suitable sensory modality to allow it.
Keyphrases