Login / Signup

CYP46A1 Activation by Efavirenz Leads to Behavioral Improvement without Significant Changes in Amyloid Plaque Load in the Brain of 5XFAD Mice.

Alexey M PetrovMorrie LamNatalia MastJean MoonYong LiErin MaxfieldIrina A Pikuleva
Published in: Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics (2020)
Efavirenz, the FDA-approved anti-retroviral medication, is evaluated in the clinical trial in patients with mild cognitive impairment or early dementia due to Alzheimer's disease. Efavirenz is assessed for activation of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme that converts cholesterol to 24-hydroxycholesterol. Cholesterol 24-hydroxylation is the major pathway for brain cholesterol removal, and a mechanism that controls brain cholesterol turnover. The present study tested efavirenz on 5XFAD mice (an Alzheimer's model) at a very low daily dose of 0.1 mg/kg body weight. Efavirenz treatment started from three months of age, after amyloid plague appearance, and continued for 6 months. This treatment led to CYP46A1 activation in the brain, enhancement of brain cholesterol turnover, behavioral improvements, reduction in microglia activation but increased astrocyte reactivity. The levels of the soluble and insoluble amyloid 40 and 42 peptides were unchanged while the number and area of the dense core amyloid plaques were slightly decreased. The measurements of the brain levels of several pre- and post-synaptic proteins (Munc13-1, PSD-95, gephyrin, synaptophysin, synapsin-1, and calbindin-D28k) suggested efavirenz effect at the synaptic level. Efavirenz treatment in the present work seems to represent a model of behavioral and other improvements independent of the levels of the amyloid peptides and provides insight into potential outcomes of the future clinical trial.
Keyphrases