Login / Signup

Mechanism of the extremely high duplex-forming ability of oligonucleotides modified with N-tert-butylguanidine- or N-tert-butyl-N'-methylguanidine-bridged nucleic acids.

Takao YamaguchiNaohiro HorieHiroshi AoyamaShinji KumagaiSatoshi Obika
Published in: Nucleic acids research (2023)
Antisense oligonucleotides (ASOs) are becoming a promising class of drugs for treating various diseases. Over the past few decades, many modified nucleic acids have been developed for application to ASOs, aiming to enhance their duplex-forming ability toward cognate mRNA and improve their stability against enzymatic degradations. Modulating the sugar conformation of nucleic acids by substituting an electron-withdrawing group at the 2'-position or incorporating a 2',4'-bridging structure is a common approach for enhancing duplex-forming ability. Here, we report on incorporating an N-tert-butylguanidinium group at the 2',4'-bridging structure, which greatly enhances duplex-forming ability because of its interactions with the minor groove. Our results indicated that hydrophobic substituents fitting the grooves of duplexes also have great potential to increase duplex-forming ability.
Keyphrases
  • hydrogen peroxide
  • nitric oxide
  • molecular dynamics simulations
  • heat shock
  • oxidative stress
  • ionic liquid
  • risk assessment
  • heat stress