Comprehensive Analysis of the Effect of 20( R )-Ginsenoside Rg3 on Stroke Recovery in Rats via the Integrative miRNA-mRNA Regulatory Network.
Rui ZhangDe-Yun ChenXing-Wei LuoYuan YangXiao-Chao ZhangRen-Hua YangPeng ChenZhi-Qiang ShenBo HePublished in: Molecules (Basel, Switzerland) (2022)
MicroRNAs (miRNAs) are a class of small, endogenous, noncoding RNAs. Recent research has proven that miRNAs play an essential role in the occurrence and development of ischemic stroke. Our previous studies confirmed that 20(R)-ginsenosideRg3 [20(R)-Rg3] exerts beneficial effects on cerebral ischemia-reperfusion injury (CIRI), but its molecular mechanism has not been elucidated. In this study, we used high-throughput sequencing to investigate the differentially expressed miRNA and mRNA expression profiles of 20(R)-Rg3 preconditioning to ameliorate CIRI injury in rats and to reveal its potential neuroprotective molecular mechanism. The results show that 20(R)-Rg3 alleviated neurobehavioral dysfunction in MCAO/R-treated rats. Among these mRNAs, 953 mRNAs were significantly upregulated and 2602 mRNAs were downregulated in the model group versus the sham group, whereas 437 mRNAs were significantly upregulated and 35 mRNAs were downregulated in the 20(R)-Rg3 group in contrast with those in the model group. Meanwhile, the expression profile of the miRNAs showed that a total of 283 differentially expressed miRNAs were identified, of which 142 miRNAs were significantly upregulated and 141 miRNAs were downregulated in the model group compared with the sham group, whereas 34 miRNAs were differentially expressed in the 20(R)-Rg3 treatment group compared with the model group, with 28 miRNAs being significantly upregulated and six miRNAs being significantly downregulated. Furthermore, 415 (391 upregulated and 24 downregulated) differentially expressed mRNAs and 22 (17 upregulated and 5 downregulated) differentially expressed miRNAs were identified to be related to 20(R)-Rg3's neuroprotective effect on stroke recovery. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that 20(R)-Rg3 could modulate multiple signaling pathways related to these differential miRNAs, such as the cGMP-PKG, cAMP and MAPK signaling pathways. This study provides new insights into the protective mechanism of 20(R)-Rg3 against CIRI, and the mechanism may be partly associated with the regulation of brain miRNA expression and its target signaling pathways.
Keyphrases
- signaling pathway
- ischemia reperfusion injury
- cerebral ischemia
- atrial fibrillation
- poor prognosis
- blood brain barrier
- computed tomography
- multiple sclerosis
- clinical trial
- transcription factor
- single cell
- endoplasmic reticulum stress
- high throughput sequencing
- functional connectivity
- smoking cessation
- protein kinase