Thermally Responsive Alkane Partitions for Assay Automation.
David J BoegnerMicaela L EverittIan M WhitePublished in: ACS applied materials & interfaces (2022)
For point-of-care diagnostic tools to be impactful, they must be inexpensive, equipment-free, and sample-to-answer (i.e., require no user intervention). Here, we report a new approach to enable sample-to-answer diagnostics that utilizes thermally responsive alkane partitions (TRAPs) as automated pseudo-valves. When combined with the magnetic manipulation of microbeads, TRAPs enable the pumpless automation of all steps in complex assays. We demonstrate that in relatively narrow channel geometries, liquified alkane partitions continue to separate reagents on each side of the partition while enabling the transition of magnetic beads from one reagent to the next, replacing manual pipetting steps in conventional assays. In addition, we show that in relatively broader geometries, liquified partitions breach, enabling the addition/mixing of preloaded reagents. Through calculation and experimentation, we determine the geometric design rules for implementing the stationary and removable partitions in fluidic channels. In addition, we demonstrate that magnetic microbeads can be pulled through liquified stationary TRAPs without disrupting partition integrity and without disrupting bound protein complexes attached at the microbead surface. The TRAP technology introduced here can enable a new low-cost and equipment-free approach for fully automated sample-to-answer diagnostics.