Neural correlates of an illusionary sense of agency caused by virtual reality.
Yiyang CaiHuichao YangXiaosha WangZiyi XiongSimone KühnYanchao BiKunlin WeiPublished in: Cerebral cortex (New York, N.Y. : 1991) (2024)
Sense of agency (SoA) is the sensation that self-actions lead to ensuing perceptual consequences. The prospective mechanism emphasizes that SoA arises from motor prediction and its comparison with actual action outcomes, while the reconstructive mechanism stresses that SoA emerges from retrospective causal processing about the action outcomes. Consistent with the prospective mechanism, motor planning regions were identified by neuroimaging studies using the temporal binding (TB) effect, a behavioral measure often linked to implicit SoA. Yet, TB also occurs during passive observation of another's action, lending support to the reconstructive mechanism, but its neural correlates remain unexplored. Here, we employed virtual reality (VR) to modulate such observation-based SoA and examined it with functional magnetic resonance imaging (fMRI). After manipulating an avatar hand in VR, participants passively observed an avatar's "action" and showed a significant increase in TB. The binding effect was associated with the right angular gyrus and inferior parietal lobule, which are critical nodes for inferential and agency processing. These results suggest that the experience of controlling an avatar may potentiate inferential processing within the right inferior parietal cortex and give rise to the illusionary SoA without voluntary action.