Login / Signup

Transistor-Based Work-Function Measurement of Metal-Organic Frameworks for Ultra-Low-Power, Rationally Designed Chemical Sensors.

David W GardnerXiang GaoHossain M FahadAn-Ting YangSam HeAli JaveyCarlo CarraroRoya Maboudian
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
A classic challenge in chemical sensing is selectivity. Metal-organic frameworks (MOFs) are an exciting class of materials because they can be tuned for selective chemical adsorption. Adsorption events trigger work-function shifts, which can be detected with a chemical-sensitive field-effect transistor (power ≈microwatts). In this work, several case studies were used towards generalizing the sensing mechanism, ultimately towards our metal-centric hypothesis. HKUST-1 was used as a proof-of-principle humidity sensor. The response is thickness independent, meaning the response is surface localized. ZIF-8 is demonstrated to be an NO2 -sensing material, and the response is dominated by adsorption at metal sites. Finally, MFM-300(In) shows how standard hard-soft acid-base theory can be used to qualitatively predict sensor responses. This paper sets the groundwork for using the tunability of metal-organic frameworks for chemical sensing with distributed, scalable devices.
Keyphrases
  • metal organic framework
  • aqueous solution
  • high resolution
  • mass spectrometry
  • palliative care
  • low cost
  • advanced cancer