Light Sheet-based Laser Patterning Bioprinting Produces Long-term Viable Full-thickness Skin Constructs.
Levin HafaLouise BreidebandLucas Ramirez PosadaNúria TorrasElena MartinezErnst H K StelzerFrancesco PampaloniPublished in: Advanced materials (Deerfield Beach, Fla.) (2023)
Tissue engineering holds great promise for biomedical research and healthcare, offering alternatives to animal models and enabling tissue regeneration and organ transplantation. Three-dimensional (3D) bioprinting stands out for its design flexibility and reproducibility. Here, we present an integrated fluorescent light sheet bioprinting and imaging system that combines high printing speed (0.66 mm 3 /s) and resolution (9 μm) with light sheet-based imaging. This approach employs direct laser patterning and a static light sheet for confined voxel crosslinking in photocrosslinkable materials. The developed bioprinter enables real-time monitoring of hydrogel crosslinking using fluorescent recovery after photobleaching (FRAP) and brightfield imaging as well as in situ light sheet imaging of cells. Human fibroblasts encapsulated in a thiol-ene click chemistry-based hydrogel exhibited high viability (83% ± 4.34%) and functionality. Furthermore, full-thickness skin constructs displayed characteristics of both epidermal and dermal layers and remained viable for 41 days. The integrated approach demonstrates the capabilities of light sheet bioprinting, offering high speed, resolution, and real-time characterization. Future enhancements involving solid-state laser scanning devices such as acousto-optic deflectors and modulators will further enhance resolution and speed, opening new opportunities in light-based bioprinting and advancing tissue engineering. This article is protected by copyright. All rights reserved.
Keyphrases
- tissue engineering
- high resolution
- high speed
- wound healing
- healthcare
- stem cells
- drug delivery
- single molecule
- endothelial cells
- quantum dots
- solid state
- optical coherence tomography
- small molecule
- soft tissue
- atomic force microscopy
- machine learning
- cell death
- photodynamic therapy
- hyaluronic acid
- artificial intelligence
- mesenchymal stem cells
- health information
- extracellular matrix
- health insurance
- current status
- fluorescent probe
- pluripotent stem cells