Translational and structural vaccinomics approach to design a multi-epitope vaccine against NOL4 autologous antigen of small cell lung cancer.
Pavithran GBhawna RathiSeneha SantoshiPublished in: Immunologic research (2023)
Small cell lung cancer (SCLC) is one of the most common cancers and it is the sixth common cause for cancer-related deaths. The high plasticity and metastasis have been a major challenge for humanity to treat the disease. Hence, a vaccine for SCLC has become an urgent need of the hour due to public health concern. Implementation of immunoinformatics technique is one of the best way to find a suitable vaccine candidate. Immunoinformatics tools can be used to overcome the limitations and difficulties of traditional vaccinological techniques. Multi-epitope cancer vaccines have become a next-generation technique in vaccinology which can be used to stimulate more potent immune response against a particular antigen by eliminating undesirable molecules. In this study, we used multiple computational and immunoinformatics approach to design a novel multi-epitope vaccine for small cell lung cancer. Nucleolar protein 4 (NOL4) is an autologous cancer-testis antigen overexpressed in SCLC cells. Seventy-five percent humoral immunity have been identified for this particular antigen. In this study, we mapped immunogenic cytotoxic T lymphocyte, helper T lymphocyte, and interferon-gamma epitopes present in NOL4 antigen and designed a multi-epitope-based vaccine using the predicted epitopes. The designed vaccine was antigenic, non-allergenic, and non-toxic with 100% applicability on human population. The chimeric vaccine construct showed stable and significant interaction with endosomal and plasmalemmal toll-like receptors in molecular docking and protein-peptide interaction analysis, thus assuring a strong potent immune response against the vaccine upon administration. Therefore, these preliminary results can be used to carry out further experimental investigations.
Keyphrases
- small cell lung cancer
- immune response
- public health
- molecular docking
- dendritic cells
- endothelial cells
- papillary thyroid
- primary care
- blood pressure
- monoclonal antibody
- toll like receptor
- small molecule
- binding protein
- quality improvement
- cell proliferation
- cell cycle arrest
- anti inflammatory
- global health
- pi k akt