Login / Signup

Human Trabecular Meshwork (HTM) Cells Treated with TGF-β2 or Dexamethasone Respond to Compression Stress in Different Manners.

Megumi WatanabeTatsuya SatoYuri TsugenoAraya UmetsuSoma SuzukiMasato FuruhashiYosuke IdaFumihito HikageHiroshi Ohguro
Published in: Biomedicines (2022)
To characterize our recently established in vitro glaucomatous human trabecular meshwork (HTM) models using dexamethasone (DEX)- or TGF-β2-treated HTM cells, (1) two-dimensional (2D) cultured HTM cells were characterized by means of the real-time cellular metabolism analysis using a Seahorse analyzer, and (2) the effects of mechanical compression stresses toward the three-dimensional (3D) HTM spheroids were evaluated by analyzing the gene expression of several ECM proteins, inflammatory cytokines, and ER stress-related factors of those 3D HTM spheroid models. The results indicated that (1) the real-time cellular metabolism analysis indicated that TGF-β2 significantly induced an energy shift from mitochondrial oxidative phosphorylation (OXPHOS) into glycolysis, and DEX induced similar but lesser effects. In contrast, ROCK2 inhibition by KD025 caused a substantial reverse energy shift from glycolysis into OXPHOS. (2) Upon direct compression stresses toward the untreated control 3D HTM spheroids, a bimodal fluctuation of the mRNA expressions of ECM proteins was observed for 60 min, that is, initial significant upregulation (0-10 min) and subsequent downregulation (10-30 min) followed by another upregulation (30-60 min); those of inflammatory cytokines and ER stress-related factors were also bimodally changed. However, such compression stresses for 30 min toward TGF-β2- or DEX-treated 3D HTM spheroids induced downregulation of most of those of inflammatory cytokines and ER stress-related factors in addition to upregulation of COL1 and downregulation of FN. The findings presented herein indicate that (1) OXPHOS of the HTM cells was decreased or increased by TGF-β2 or DEX stimulation or ROCK2 inhibition, and (2) mechanical compression stresses toward 3D HTM spheroids may replicate acute, subacute, and chronic HTM models affected by elevated intraocular pressures.
Keyphrases