Login / Signup

Preparation of food active packaging materials based on calcium hydroxide and modified porous medium for reducing carbon dioxide and kimchi odor.

Suyeon JeongHyun-Gyu LeeSeong Youl LeeSeungRan Yoo
Published in: Journal of food science (2023)
Carbon dioxide and kimchi odor compounds, formed during fermentation, negatively affect the long-distance distribution of commercial kimchi. To address these issues, in this study, we modified different porous media (activated carbon, bleaching earth, diatomite, and zeolite) using sodium bicarbonate and silver (Ag) ions. Functional sheets were prepared using linear low-density polyethylene, calcium hydroxide, a porous medium, and a blowing agent. Various prepared porous media and sheets were effective in removing acetic acid, sulfur compounds (allyl methyl sulfide, dimethyl disulfide, allyl methyl disulfide, and diallyl disulfide), and carbon dioxide. Porous media with micropores exhibited a sulfur compound removal efficiency of 43.5%-99.4%, while no effect was observed on acetic acid removal. However, porous media with mesopores showed an acetic acid removal efficiency of 42.3%-90.7%, with no reduction in sulfur compounds removal. The impregnation of porous materials with sodium bicarbonate significantly (p < 0.05) enhanced the acetic acid removal activity. Ag modification improved the sulfur compound removal of the mesoporous bleaching earth and diatomite statistically (p < 0.05). Additionally, the incorporation of sodium bicarbonate-impregnated mesoporous media significantly improved carbon dioxide removal, reducing concentrations from 25.97% to 14.27% with respect to the control group. Our functional food packaging materials can solve the current issues in kimchi distribution by removing carbon dioxide and kimchi odor without affecting its quality. PRACTICAL APPLICATION: Food active packaging materials containing calcium hydroxide and modified porous medium are effective in removing carbon dioxide and kimchi odor (acetic acid and sulfur compounds). The removal of carbon dioxide and kimchi odor, which adversely affect the distribution and sale of commercial kimchi, can help solve the current issues with kimchi distribution without affecting its quality.
Keyphrases
  • carbon dioxide
  • metal organic framework
  • highly efficient
  • tissue engineering
  • quantum dots
  • hydrogen peroxide
  • nitric oxide
  • climate change
  • human health
  • saccharomyces cerevisiae
  • aqueous solution
  • silver nanoparticles