Genome-Wide Identification and Characterization of WRKY Transcription Factors in Betula platyphylla Suk. and Their Responses to Abiotic Stresses.
Jiajie YuXiang ZhangJiayu CaoHeming BaiRuiqi WangChao WangZhiru XuChunming LiGuanjun LiuPublished in: International journal of molecular sciences (2023)
The WRKY transcription factor (TF) family is one the largest plant-specific transcription factor families. It has been proven to play significant roles in multiple plant biological processes, especially stress response. Although many WRKY TFs have been identified in various plant species, WRKYs in white birch ( Betula platyphylla Suk.) remain to be studied. Here, we identified a total of 68 BpWRKYs, which could be classified into four main groups. The basic physiochemical properties of these TFs were analyzed using bioinformatics tools, including molecular weight, isoelectric point, chromosome location, and predicted subcellular localization. Most BpWRKYs were predicted to be located in the nucleus. Synteny analysis found 17 syntenic gene pairs among BpWRKY s and 52 syntenic gene pairs between BpWRKY s and AtWRKY s. The cis -acting elements in the promoters of BpWRKY s could be enriched in multiple plant biological processes, including stress response, hormone response, growth and development, and binding sites. Tissue-specific expression analysis using qRT-PCR showed that most BpWRKY s exhibited highest expression levels in the root. After ABA, salt (NaCl), or cold treatment, different BpWRKY s showed different expression patterns at different treatment times. Furthermore, the results of the Y2H assay proved the interaction between BpWRKY17 and a cold-responsive TF, BpCBF7. By transient expression assay, BpWRKY17 and BpWRKY67 were localized in the nucleus, consistent with the previous prediction. Our study hopes to shed light for research on WRKY TFs and plant stress response.