Characterization, Variables, and Antioxidant Activity of the Maillard Reaction in a Fructose⁻Histidine Model System.
Pengli LiuXiaoming LuNingyang LiZhenjia ZhengXuguang QiaoPublished in: Molecules (Basel, Switzerland) (2018)
Fructose and its polysaccharides are widely found in fruits and vegetables, with the Maillard reaction of fructose affecting food quality. This study aimed to investigate the Maillard reaction of fructose using a fructose⁻histidine model system. The reaction process was characterized using fluorescence spectroscopy and ultraviolet spectroscopy. The effects of temperature, initial reactant concentration, initial fructose concentration, initial histidine concentration, and initial pH value on the different stages of the Maillard reaction were studied. Reactant reduction, ultraviolet and fluorescence spectra, acetic acid content, 5-hydroxymethylfurfural (5-HMF) content, and browning intensity were evaluated. The results showed that increasing the temperature and reactant concentration promoted the condensation reaction of fructose and amino acid in the early stage, the formation of intermediate products with ultraviolet absorption and fluorescence in the intermediate stage, and the formation of pigment in the final stage. The 5-HMF concentration decreased with increasing histidine concentration and initial pH value. Changes in the shape of ultraviolet and fluorescence spectra showed that the initial pH value affected not only the reaction rate, but also the intermediate product types. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging rate of the Maillard reaction products increased with increasing temperature, reactant concentration, and initial pH value.