Rewiring cortico-muscular control in the healthy and post-stroke human brain with proprioceptive beta-band neurofeedback.
Fatemeh KhademiGeorgios NarosAli NicksiratDominic KrausAlireza GharabaghiPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2022)
In severely affected stroke survivors, cortico-muscular control is disturbed and volitional upper limb movements often absent. Mental rehearsal of the impaired movement in conjunction with sensory feedback provision are suggested as promising rehabilitation exercises. Knowledge about the underlying neural processes, however, remains vague. In male and female chronic stroke patients with hand paralysis, a brain-computer interface controlled a robotic orthosis and turned sensorimotor beta-band desynchronization during motor imagery (MI) of finger extension into contingent hand opening. Healthy control subjects performed the same task and received the same proprioceptive feedback with a robotic orthosis or visual feedback only. Only when proprioceptive feedback was provided, cortico-muscular coherence (CMC) increased with a predominant information flow from the sensorimotor cortex to the finger extensors. This effect (i) was specific to the beta frequency-band, (ii) transferred to a motor task, (iii) was proportional to subsequent corticospinal excitability and correlated with behavioral changes in the (iv) healthy and (v) post-stroke condition; notably, MI-related enhancement of beta-band CMC in the ipsilesional premotor cortex correlated with motor improvements after the intervention.In the healthy and injured human nervous system, synchronized activation of motor-related cortical and spinal neural pools facilitates, in accordance with the communication-through-coherence hypothesis, cortico-spinal communication and may, thereby, be therapeutically relevant for functional restoration after stroke, when voluntary movements are no longer possible. Significance statement: This study provides insights into the neural processes that transfer effects of brain-computer interface neurofeedback to subsequent motor behavior. Specifically, volitional control of cortical oscillations and proprioceptive feedback enhances both cortical activity and behaviorally relevant connectivity to the periphery in a topographically circumscribed and frequency-specific way. This enhanced cortico-muscular control can be induced in the healthy and post-stroke brain. Thereby, activating the motor cortex with mental rehearsal of the impaired movement and closing the loop by robot-assisted feedback synchronizes ipsilesional premotor cortex and spinal neural pools in the beta-frequency band. This facilitates, in accordance with the communication-through-coherence hypothesis, cortico-spinal communication and may, thereby, be therapeutically relevant for functional restoration after stroke, when voluntary movements are no longer possible.
Keyphrases
- functional connectivity
- resting state
- robot assisted
- spinal cord
- resistance training
- white matter
- minimally invasive
- upper limb
- randomized controlled trial
- healthcare
- atrial fibrillation
- endothelial cells
- working memory
- multiple sclerosis
- cerebral ischemia
- machine learning
- oxidative stress
- body composition
- diabetic rats
- drug induced
- brain injury
- social media
- transcranial direct current stimulation
- transcranial magnetic stimulation