Login / Signup

Experimental accompanied with computational (atomic/electronic)-level simulation investigations of Polygonum cuspidatum root extract as sustainable corrosion inhibitor for mild steel in aggressive corrosive media.

Abhinay ThakurOmar DagdagAvni BerishaEno EbensoAshish KumarShveta SharmaRichika GanjooHumira Assad
Published in: Environmental science and pollution research international (2024)
This study investigates the corrosion inhibition potential of Polygonum cuspidatum root extract (PCRE) on mild steel in a 0.5 M HCl acidic environment. Herein, various techniques including electrochemical and gravimetric measurements were employed, along with scanning electron microscopy (SEM) and contact angle (CA) measurements for surface morphology analysis. The impedance study revealed a concentration-dependent enhancement in corrosion resistance, classifying PCRE as a mixed-type inhibitor (i.e., inhibits both anodic and cathodic reactions). The highest efficiency, 96.71% at 298 K, was observed at a 1000-ppm PCRE concentration. Langmuir model computations suggested chemisorption and physisorption of PCRE on the electrode substrate. Increased R p (from 28.648 to 174.01 Ω) and R ct (185.74 Ω cm 2 ) at 1000 ppm demonstrated improved corrosion resistance. Additionally, SEM analysis displayed a uniform, protective surface, reducing metal degradation. Theoretical calculations highlighted strong interactions between PCRE and mild steel, with a low energy gap (ΔE), as follows: 1-O-methylemodin (2.267 eV) < emodin (2.288 eV) < emodin-1-O-glucoside (2.343 eV) < piceid (2.931 eV) < resveratrol (2.952 eV), confirming PCRE's excellent micro-level anti-corrosion capabilities. This eco-benign corrosion inhibitor offers sustainable, low-toxicity protection, cost-effectiveness, and versatile performance, surpassing commercial counterparts while aligning with sustainability goals.
Keyphrases