Login / Signup

Preparation and comparative evaluation of 99m Tc-HYNIC-cNGR and 99m Tc-HYNIC-PEG2 -cNGR as tumor-targeting molecular imaging probes.

Kusum VatsDrishty SatpatiRohit SharmaChandan KumarHaladhar Dev SarmaSharmila Banerjee
Published in: Journal of labelled compounds & radiopharmaceuticals (2018)
The tripeptide sequence asparagine-glycine-arginine (NGR) specifically recognizes aminopeptidase N (APN or CD13) receptors highly expressed on tumor cells and vasculature. Thus, NGR peptides can precisely deliver therapeutic and diagnostic compounds to CD13 expressing cancer sites. In this regard, 2 NGR peptide ligands, HYNIC-c(NGR) and HYNIC-PEG2 -c(NGR), were synthesized, radiolabeled with 99m Tc, and evaluated in CD13-positive human fibrosarcoma HT-1080 tumor xenografts. The radiotracers, 99m Tc-HYNIC-c(NGR) and 99m Tc-HYNIC-PEG2 -c(NGR), could be prepared in approximately 95% radiochemical purity and exhibited excellent in vitro and in vivo stability. The radiotracers were hydrophilic in nature with log P values being -2.33 ± 0.05 and -2.61 ± 0.08. The uptake of 2 radiotracers 99m Tc-HYNIC-c(NGR) and 99m Tc-HYNIC-PEG2 -c(NGR) was similar in nude mice bearing human fibrosarcoma HT-1080 tumor xenografts, which was significantly reduced (P < .05) during blocking studies. The 2 radiotracers being hydrophilic cleared rapidly from blood, liver, and intestine and were excreted through renal pathway. The pharmacokinetics of 99m Tc-labeled HYNIC peptide could not be modulated through introduction of PEG2 unit, thus posing a challenge for studies with other linkers towards enhanced tumor uptake and retention.
Keyphrases