Heterologous Expression of Aedes aegypti Cation Chloride Cotransporter 2 (aeCCC2) in Xenopus laevis Oocytes Induces an Enigmatic Na⁺/Li⁺ Conductance.
Megha KalsiChristopher GillenPeter M PiermariniPublished in: Insects (2019)
The yellow fever mosquito Aedes aegypti possesses three genes encoding putative Na⁺-coupled cation chloride cotransporters (CCCs): aeNKCC1, aeCCC2, and aeCCC3. To date, none of the aeCCCs have been functionally characterized. Here we expressed aeCCC2 heterologously in Xenopus oocytes and measured the uptake of Li⁺ (a tracer for Na⁺) and Rb⁺ (a tracer for K⁺). Compared to control (H₂O-injected) oocytes, the aeCCC2-expressing oocytes exhibited significantly greater uptake of Li⁺, but not Rb⁺. However, the uptake of Li⁺ was neither Cl--dependent nor inhibited by thiazide, loop diuretics, or amiloride, suggesting unconventional CCC activity. To determine if the Li⁺-uptake was mediated by a conductive pathway, we performed two-electrode voltage clamping (TEVC) on the oocytes. The aeCCC2 oocytes were characterized by an enhanced conductance for Li⁺ and Na⁺, but not K⁺, compared to control oocytes. It remains to be determined whether aeCCC2 directly mediates the Na⁺/Li⁺ conductance or whether heterologous expression of aeCCC2 stimulates an endogenous cation channel in the oocyte plasma membrane.