Login / Signup

Comparative Prognostic Value of Coronary Calcium Score and Perivascular Fat Attenuation Index in Coronary Artery Disease.

Maria Teresa SavoMorena De AmicisDan Alexandru CozacGabriele CordoniSimone CorradinElena CozzaFilippo AmatoEleonora LassandroStefano Da PozzoDonatella TansellaDiana Di PaolantonioMaria Maddalena BaroniAntonio Di StefanoGiorgio De ContiRaffaella MottaValeria Pergola
Published in: Journal of clinical medicine (2024)
Coronary artery disease (CAD) is the leading global cause of mortality, accounting for approximately 30% of all deaths. It is primarily characterized by the accumulation of atherosclerotic plaques within the coronary arteries, leading to reduced blood flow to the heart muscle. Early detection of atherosclerotic plaques is crucial to prevent major adverse cardiac events. Notably, recent studies have shown that 15% of myocardial infarctions occur in patients with non-obstructive CAD, underscoring the importance of comprehensive plaque assessment beyond merely identifying obstructive lesions. Cardiac Computed Tomography Angiography (CCTA) has emerged as a cost-effective and efficient technique for excluding obstructive CAD, particularly in patients with a low-to-intermediate clinical likelihood of the disease. Recent advancements in CCTA technology, such as improved resolution and reduced scan times, have mitigated many technical challenges, allowing for precise quantification and characterization of both calcified and non-calcified atherosclerotic plaques. This review focuses on two critical physiological aspects of atherosclerotic plaques: the burden of calcifications, assessed via the coronary artery calcium score (CACs), and perivascular fat attenuation index (pFAI), an emerging marker of vascular inflammation. The CACs, obtained through non-contrast CT scans, quantifies calcified plaque burden and is widely used to stratify cardiovascular risk, particularly in asymptomatic patients. Despite its prognostic value, the CACs does not provide information on non-calcified plaques or inflammatory status. In contrast, the pFAI, derived from CCTA, serves as an indirect marker of coronary inflammation and has shown potential in predicting adverse cardiac events. Combining both CACs and pFAI assessment could offer a comprehensive risk stratification approach, integrating the established calcification burden with novel inflammatory markers to enhance CAD prevention and management strategies.
Keyphrases