Transcription factor Ets-2 regulates the expression of key lymphotropic factors.
Panagiota DavoulouIoanna AggeletopoulouIoannis PanagouliasTassos GeorgakopoulosAthanasia MouzakiPublished in: Molecular biology reports (2020)
Transcription factor Ets-2 downregulates the expression of cytokine genes and HIV-1 in resting T-cells. Herein, we studied whether Ets-2 regulates the expression of lymphotropic factors (LFs) NFAT2, NF-κΒ/p65, c-Jun, c-Fos, which regulate the activation/differentiation of T-cells, and kinase CDK10, which controls Ets-2 degradation and repression activity. In silico analysis revealed Ets-2 binding sites on the promoters of NFAT2, c-Jun, c-Fos. The T-cell lines Jurkat (models T-cell signaling/activation) and H938 (contains the HIV-1-LTR) were transfected with an Ets-2 overexpressing vector, in the presence/absence of mitogens. mRNA and protein levels were assessed by qPCR and Western immunoblotting, respectively. Ets-2 overexpression in unstimulated Jurkat increased NFAT2 and c-Jun mRNA/protein, c-Fos mRNA and NF-κΒ/p65 protein, and decreased CDK10 protein. In unstimulated H938, Ets-2 upregulated NFAT2, c-Jun and CDK10 mRNA/protein and NF-κΒ/p65 protein. In stimulated Jurkat, Ets-2 increased NFAT2, c-Jun and c-Fos mRNA/protein and decreased CDK10 mRNA/protein. In stimulated H938 Ets-2 increased NFAT2, c-Jun and c-Fos protein and reduced CDK10 protein levels. Furthermore, Ets-2 overexpression modulated the expression of pro- and anti-apoptotic genes in both cell lines. Ets-2 upregulates the expression of key LFs involved in the activation of cytokine genes or HIV-1 in T-cells, either through its physical interaction with gene promoters or through its involvement in signaling pathways that directly impact their expression. The effect of Ets-2 on CDK10 expression in H938 vs Jurkat cells dictates that, additionally to Ets-2 degradation, CDK10 may facilitate Ets-2 repression activity in cells carrying the HIV-1-LTR, contributing thus to the regulation of HIV latency in virus-infected T-cells.
Keyphrases
- transcription factor
- binding protein
- genome wide identification
- poor prognosis
- antiretroviral therapy
- hiv infected
- hiv positive
- dna binding
- signaling pathway
- hepatitis c virus
- protein protein
- cell cycle
- nuclear factor
- human immunodeficiency virus
- amino acid
- oxidative stress
- hiv testing
- hiv aids
- genome wide
- induced apoptosis
- mental health
- physical activity
- gene expression
- long non coding rna
- inflammatory response
- lps induced
- single cell
- epithelial mesenchymal transition
- copy number
- small molecule