Infraslow Neurofeedback Training Alters Effective Connectivity in Individuals with Chronic Low Back Pain: A Secondary Analysis of a Pilot Randomized Placebo-Controlled Study.
Divya Bharatkumar AdhiaRamakrishnan ManiPaul R TurnerSven VannesteDirk De RidderPublished in: Brain sciences (2022)
This study explored the effect of electroencephalographic infraslow neurofeedback (EEG ISF-NF) training on effective connectivity and tested whether such effective connectivity changes are correlated with changes in pain and disability in people with chronic low back pain. This involved secondary analysis of a pilot double-blinded randomised placebo-controlled study. Participants ( n = 60) were randomised to receive ISF-NF targeting either the pregenual anterior cingulate cortex (pgACC), dorsal anterior cingulate and somatosensory cortex (dACC + S1), ratio of pgACC*2/dACC + S1, or Sham-NF. Resting-state EEG and clinical outcomes were assessed at baseline, immediately after intervention, and at one-week and one-month follow-up. Kruskal-Wallis tests demonstrated significant between-group differences in effective connectivity from pgACC to S1L at one-month follow up and marginal significant changes from S1L to pgACC at one-week and one-month follow up. Mann-Whitney U tests demonstrated significant increases in effective connectivity in the ISF-NF up-training pgACC group when compared to the Sham-NF group (pgACC to S1L at one-month ( p = 0.013), and S1L to pgACC at one-week ( p = 0.008) and one-month follow up ( p = 0.016)). Correlational analyses demonstrated a significant negative correlation (ρ = -0.630, p = 0.038) between effective connectivity changes from pgACC to S1L and changes in pain severity at one-month follow-up. The ISF-NF training pgACC can reduce pain via influencing effective connectivity between pgACC and S1L.
Keyphrases
- resting state
- functional connectivity
- signaling pathway
- lps induced
- double blind
- pi k akt
- chronic pain
- nuclear factor
- oxidative stress
- clinical trial
- neuropathic pain
- white matter
- pain management
- randomized controlled trial
- study protocol
- multiple sclerosis
- open label
- virtual reality
- cell proliferation
- drug delivery
- working memory
- cancer therapy