Login / Signup

Evaluating the Tobii Pro Glasses 2 and 3 in static and dynamic conditions.

V OnkharD DodouJoost C F de Winter
Published in: Behavior research methods (2023)
Over the past few decades, there have been significant developments in eye-tracking technology, particularly in the domain of mobile, head-mounted devices. Nevertheless, questions remain regarding the accuracy of these eye-trackers during static and dynamic tasks. In light of this, we evaluated the performance of two widely used devices: Tobii Pro Glasses 2 and Tobii Pro Glasses 3. A total of 36 participants engaged in tasks under three dynamicity conditions. In the "seated with a chinrest" trial, only the eyes could be moved; in the "seated without a chinrest" trial, both the head and the eyes were free to move; and during the walking trial, participants walked along a straight path. During the seated trials, participants' gaze was directed towards dots on a wall by means of audio instructions, whereas in the walking trial, participants maintained their gaze on a bullseye while walking towards it. Eye-tracker accuracy was determined using computer vision techniques to identify the target within the scene camera image. The findings showed that Tobii 3 outperformed Tobii 2 in terms of accuracy during the walking trials. Moreover, the results suggest that employing a chinrest in the case of head-mounted eye-trackers is counterproductive, as it necessitates larger eye eccentricities for target fixation, thereby compromising accuracy compared to not using a chinrest, which allows for head movement. Lastly, it was found that participants who reported higher workload demonstrated poorer eye-tracking accuracy. The current findings may be useful in the design of experiments that involve head-mounted eye-trackers.
Keyphrases
  • study protocol
  • phase iii
  • optic nerve
  • clinical trial
  • phase ii
  • randomized controlled trial
  • optical coherence tomography
  • working memory
  • lower limb
  • anti inflammatory
  • deep learning
  • machine learning
  • high speed