Login / Signup

Inhibition of 20-hydroxyeicosatetraenoic acid biosynthesis by vitamin E analogs in human and bovine cytochrome P450 microsomes.

Matthew J KuhnLorraine M Sordillo
Published in: Journal of animal physiology and animal nutrition (2021)
Dairy cattle are predisposed to disease around the time of calving due to dysfunctional inflammatory responses. Oxylipids are lipid-derived mediators that regulate all aspects of the inflammatory response, and shifts in oxylipid profiles are correlated with disease risk. For example, 20-hydroxyeicosatetraenoic acid (HETE) is an oxylipid derived from cytochrome P450 enzymes (CYP450) found at significantly greater concentrations around calving and during clinical disease. Biosynthesis of 20-HETE occurs almost exclusively from two specific CYP450 of which CYP450 family four sub-family F member two (CYP4F2) is the major contributor to 20-HETE production in humans. To further study the activities of 20-HETE and potentially reduce its production in vivo, mitigation methods must be explored. Additional substrates of CYP4F2, such as vitamin E, are known to both increase and decrease the metabolism of other CYP4F2 substrates. This study aimed to determine whether vitamin E analogs may reduce the production of 20-HETE through competition for CYP4F2 activity in human CYP4F2, bovine-kidney and bovine-mammary microsomes. Gamma-tocopherol reduced 20-HETE production from human and bovine-kidney microsomes (35.3% and 27.5%, respectively) whereas γ-tocotrienol only reduced 20-HETE production from human microsomes (40.1%). Finally, bovine-mammary microsomes did not produce a quantifiable amount of 20-HETE, suggesting basal mammary CYP4F2 activity may not be a significant contributor to 20-HETE found in milk. Together, these data show that analogs of vitamin E can reduce the production of 20-HETE, potentially through competition with arachidonic acid for metabolism by CYP4F2, posing a potential means for limiting 20-HETE production during clinical diseases of dairy cattle.
Keyphrases
  • endothelial cells
  • inflammatory response
  • induced pluripotent stem cells
  • pluripotent stem cells
  • molecular docking
  • climate change
  • big data