Succinimide-Functionalized Reduced Graphene Oxide Nanosheets: A High-throughput Resistive Sensing Platform for Age-Related Macular Degeneration Biomarker Determination Using Human Tears.
Tanmoya Nemai GhoshDinesh Ramkrushna RotakeShiv Govind SinghPublished in: ACS applied bio materials (2024)
Age-related macular degeneration (AMD) is a well-recognized affliction among the elderly, causing vision impairment ranging from blurred vision to complete blindness. This underscores the critical need for accurate, precise, and early detection methods. Herein, we developed a noninvasive, label-free electrical biosensor, constructed on an economical printed circuit board (PCB) substrate, designed specifically for the precise quantification of AMD biomarker: complement component III (C3). The hydrothermally reduced graphene oxide (rGO) was deposited between gold-interdigitated microelectrodes, forming a conductive channel. The fabricated C3 biosensor exhibits a low detection limit of 0.4342 ng/mL and an impressive sensitivity of 9.238 ((Δ R / R )/ng.mL -1 )/cm 2 with a regression coefficient of 0.9815 calibrated within the clinical C3 range of 10-30 ng/mL. This excellent performance is ascribed to the synergistic effects of 1-pyrenebutanoic acid succinimidyl ester (PBASE) linker and conducting properties of rGO as they generate large active sites for higher anti-C3 antibody immobilization, thereby enhancing sensitivity and specificity. Furthermore, the performance of this proposed C3 sensor chip was validated with enzyme-linked immunosorbent assay (ELISA) using five human tear samples exhibiting an outstanding correlation of a regression value of 0.9774. The unparalleled merits of this newly crafted C3 biosensor transcend those of preceding platforms, boasting superior accuracy and precision in quantifying C3 levels in human tears, accelerated operational speed with results attainable within a mere 15 min, cost-effectiveness, and excellent sensitivity.
Keyphrases
- reduced graphene oxide
- gold nanoparticles
- age related macular degeneration
- label free
- high throughput
- endothelial cells
- quantum dots
- induced pluripotent stem cells
- sensitive detection
- pluripotent stem cells
- wastewater treatment
- high resolution
- silver nanoparticles
- middle aged
- magnetic resonance
- circulating tumor cells
- cancer therapy