Login / Signup

Small RNAs >26 nt in length associate with AGO1 and are upregulated by nutrient deprivation in the alga Chlamydomonas.

Yingshan LiEun-Jeong KimAdam VoshallEtsuko N MoriyamaHeriberto Cerutti
Published in: The Plant cell (2023)
Small RNAs (sRNAs) associate with ARGONAUTE (AGO) proteins forming effector complexes with key roles in gene regulation and defense responses against molecular parasites. In multicellular eukaryotes, extensive duplication and diversification of RNA interference (RNAi) components have resulted in intricate pathways for epigenetic control of gene expression. The unicellular alga Chlamydomonas reinhardtii also has a complex RNAi machinery, including three AGOs and three DICER-like (DCL) proteins. However, little is known about the biogenesis and function of most endogenous sRNAs. We demonstrate here that Chlamydomonas contains uncommonly long (>26 nt) sRNAs that associate preferentially with AGO1. Somewhat reminiscent of animal PIWI-interacting RNAs, these >26 nt sRNAs are derived from moderately repetitive genomic clusters and their biogenesis is DICER-independent. Interestingly, the sequences generating these >26-nt sRNAs have been conserved and amplified in several Chlamydomonas species. Moreover, expression of these longer sRNAs increases substantially under nitrogen or sulfur deprivation, concurrently with the downregulation of predicted target transcripts. We hypothesize that the transposon-like sequences from which >26-nt sRNAs are produced might have been ancestrally targeted for silencing by the RNAi machinery but, during evolution, certain sRNAs might have fortuitously acquired endogenous target genes and become integrated into gene regulatory networks.
Keyphrases
  • gene expression
  • dna methylation
  • poor prognosis
  • signaling pathway
  • transcription factor
  • genome wide
  • cancer therapy
  • protein kinase
  • genome wide analysis
  • amino acid