Login / Signup

Retarded Diffusion and Confinement of Membrane-Bound Molecules in a Patterned Hybrid Membrane of Phospholipid Bilayers and Monolayers.

Yasushi TanimotoYu YoshimuraFumio HayashiKenichi Morigaki
Published in: The journal of physical chemistry. B (2023)
The biological membrane is a complex two-dimensional fluid, in which various molecular interactions regulate the lateral diffusion of membrane-associated molecules. Pinning of membrane proteins or lipids by extra-membrane proteins impedes the diffusion. In addition, coupling between two monolayer leaflets within a phospholipid bilayer via interdigitation plays important roles, though this effect remains elusive. Here, we fabricate a substrate-supported model membrane with patterned bilayer/monolayer regions to explore the influences of interleaflet coupling. A patterned monolayer of polymerized diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)- sn -glycero-3-phosphocholine (DiynePC), was lithographically generated and used to form patterned lipid bilayers and monolayers. A phospholipid monolayer was formed on top of the polymerized monolayer. The bilayer/monolayer hybrid membrane was continuous and fluid, but lateral diffusion in the monolayer region was significantly retarded, suggesting the influences of interleaflet coupling. We reconstituted photoreceptor rhodopsin (Rh) and G-protein transducin (G t ) as model transmembrane and peripheral proteins. Rh diffused laterally only in the bilayer region, whereas G t diffused in both bilayer and monolayer regions. The patterned hybrid bilayer/monolayer membrane reproduces the retarded diffusion and confinement of membrane-bound molecules in a controlled manner and provides insight into the physicochemical and functional roles of semipermeable corrals in the cell membrane.
Keyphrases
  • fatty acid
  • single molecule
  • high density