PheWAS-based clustering of Mendelian Randomisation instruments reveals distinct mechanism-specific causal effects between obesity and educational attainment.
Liza DarrousGibran HemaniGeorge Davey SmithZoltán KutalikPublished in: Nature communications (2024)
Mendelian Randomisation (MR) estimates causal effects between risk factors and complex outcomes using genetic instruments. Pleiotropy, heritable confounders, and heterogeneous causal effects violate MR assumptions and can lead to biases. To alleviate these, we propose an approach employing a Phenome-Wide association Clustering of the MR instruments (PWC-MR) and apply this method to revisit the surprisingly large apparent causal effect of body mass index (BMI) on educational attainment (EDU): [Formula: see text] = -0.19 [-0.22, -0.16]. First, we cluster 324 BMI-associated genetic instruments based on their association with 407 traits in the UK Biobank, which yields six distinct groups. Subsequent cluster-specific MR reveals heterogeneous causal effect estimates on EDU. A cluster enriched for socio-economic indicators yields the largest BMI-on-EDU causal effect estimate ([Formula: see text] = -0.49 [-0.56, -0.42]) whereas a cluster enriched for body-mass specific traits provides a more likely estimate ([Formula: see text] = -0.09 [-0.13, -0.05]). Follow-up analyses confirms these findings: within-sibling MR ([Formula: see text] = -0.05 [-0.09, -0.01]); MR for childhood BMI on EDU ([Formula: see text] = -0.03 [-0.06, -0.002]); step-wise multivariable MR ([Formula: see text] = -0.05 [-0.07, -0.02]) where socio-economic indicators are jointly modelled. Here we show how the in-depth examination of the BMI-EDU causal relationship demonstrates the utility of our PWC-MR approach in revealing distinct pleiotropic pathways and confounder mechanisms.
Keyphrases
- body mass index
- contrast enhanced
- magnetic resonance
- weight gain
- smoking cessation
- human milk
- risk factors
- genome wide
- magnetic resonance imaging
- type diabetes
- metabolic syndrome
- single cell
- computed tomography
- diffusion weighted imaging
- low birth weight
- adipose tissue
- skeletal muscle
- cross sectional
- optical coherence tomography
- glycemic control