Login / Signup

Protective Effect of Bio-Scaffold Against Vitrification Damage in Mouse Ovarian Tissue.

Saba AminianTahereh MazoochiElahe Seyed HosseiniParisa JamalzaeiMaryam Akhavan Taheri
Published in: Reproductive sciences (Thousand Oaks, Calif.) (2024)
Ovarian tissue cryopreservation is regarded as useful method for fertility preservation. This study aimed to preserve most of the follicular reserve from the destructive effects of cryoprotectant solutions and liquid nitrogen. For this purpose, 48 female NMRI mice (8 weeks old) were randomly divided into six groups: Fresh (not vitrified), Vitrification (not encapsulated), Alginate 1 (encapsulated in 1% alginate hydrogel before placing in vitrification solutions), Alginate 2 (encapsulated in 1% alginate hydrogel before placing in liquid nitrogen), Aloe vera 1 (encapsulated in Aloe vera pieces before placing in vitrification solutions), Aloe vera 2 (encapsulated in Aloe vera pieces before placing in liquid nitrogen). After vitrification and warming, the histological evaluation showed that the average number of intact primordial follicles decreased significantly in all groups compared to the Fresh group. (P < 0.05). Results of evaluating the expression of apoptosis-related genes showed that the ratio of Bax/Bcl2 and P53 significantly decreased in the Alginate 2 group compared with the vitrification group. The level of Kit gene (KIT proto-oncogeni receptor tyrosine kinase gene) expression was either the same or lower in the experimental groups than in the vitrification group, but there was no statistically significant difference. Levels of tissue nitric oxide (NO) and malondialdehyde (MDA) in Alginate groups 1 and 2 showed a significant decrease compared with the vitrification group (P < 0.05). To conclude, Encapsulation of ovaries in 1% alginate hydrogel before immersion in liquid nitrogen may reduce the damage caused by cryopreservation.
Keyphrases