The Bacterial Quorum-Sensing Signal 2-Aminoacetophenone Rewires Immune Cell Bioenergetics through the PGC-1α/ERRα Axis to Mediate Tolerance to Infection.
Arijit ChakrabortyArunava BandyopadhayaVijay K SinghFilip KovacicSujin ChaWilliam M OldhamA Aria TzikaLaurence G RahmePublished in: bioRxiv : the preprint server for biology (2024)
How bacterial pathogens exploit host metabolism to promote immune tolerance and persist in infected hosts remains elusive. To achieve this, we show that Pseudomonas aeruginosa (PA), a recalcitrant pathogen, utilizes the quorum sensing (QS) signal 2-aminoacetophenone (2-AA). Here, we unveil how 2-AA-driven immune tolerization causes distinct metabolic perturbations in macrophages' mitochondrial respiration and bioenergetics. We present evidence indicating that these effects stem from a decrease in pyruvate transport into mitochondria. This reduction is attributed to decreased expression of the mitochondrial pyruvate carrier (MPC1), which is mediated by diminished expression and nuclear presence of its transcriptional regulator, estrogen-related nuclear receptor alpha (ERRα). Consequently, ERRα exhibits weakened binding to the MPC1 promoter. This outcome arises from the impaired interaction between ERRα and the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Ultimately, this cascade results in diminished pyruvate influx into mitochondria and consequently reduced ATP production in tolerized macrophages. Exogenously added ATP in infected macrophages restores the transcript levels of MPC1 and ERR-α and enhances cytokine production and intracellular bacterial clearance. Consistent with the in vitro findings, murine infection studies corroborate the 2-AA-mediated long-lasting decrease in ATP and acetyl-CoA and its association with PA persistence, further supporting this QS signaling molecule as the culprit of the host bioenergetic alterations and PA persistence. These findings unveil 2-AA as a modulator of cellular immunometabolism and reveal an unprecedent mechanism of host tolerance to infection involving the PGC-1α/ERRα axis in its influence on MPC1/OXPHOS-dependent energy production and PA clearance. These paradigmatic findings paving the way for developing treatments to bolster resilience to pathogen-induced damage. Given that QS is a common characteristic of prokaryotes, it is likely that 2-AA-like molecules with similar functions may be present in other pathogens.
Keyphrases
- skeletal muscle
- oxidative stress
- poor prognosis
- pseudomonas aeruginosa
- transcription factor
- binding protein
- reactive oxygen species
- cell death
- dna methylation
- gram negative
- diabetic rats
- cystic fibrosis
- climate change
- single cell
- antimicrobial resistance
- high glucose
- rna seq
- long non coding rna
- escherichia coli
- drug induced
- drug resistant
- depressive symptoms
- endoplasmic reticulum