Login / Signup

The protective role of spirulina and β-glucan in African catfish (Clarias gariepinus) against chronic toxicity of chlorpyrifos: hemato-biochemistry, histopathology, and oxidative stress traits.

Abd-Allah A MokhbatlyDoaa H AssarEmad W GhazyZizy ElbialySally A RizkAmira A OmarAlkhateib Y GaafarMahmoud A O Dawood
Published in: Environmental science and pollution research international (2020)
Chlorpyrifos (CPF) is an insecticide that is commonly applied in the agriculture sector. However, little is known about the protective role of Spirulina platensis (SP) and/or β-glucan (BG) on African catfish exposed to chronic CPF toxicity. The fish (95 ± 5 g, initial weight) were assigned to 5 fiberglass tanks (500 L, 50 fish/tank) where the 1st and 2nd fed the basal diet, while the 3rd, 4th, and 5th fed diets with SP, BG, and SP+BG at 0.5%, respectively. Fish in 2nd, 3rd, 4th, and 5th groups were exposed to CPF at a dose of 1.5 mg/L and fed the respective diets for 60 days. In comparison with the control group, CPF-exposed fish exhibited significantly lower (P ≤ 0.05) body weights, feed intake, red blood cells count, hemoglobin concentration, packed cell volume (PCV) (%), lymphocytes, monocytes, phagocytic activity, and phagocytic index, while feed conversion ratio, white blood cell count, and neutrophils count were significantly increased. Fish exposed to CPF also revealed a significant elevation in aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, triglycerides, low-density lipoproteins (LDL), very-low-density lipoproteins (vLDL), glucose concentration, urea, and creatinine as well as low total proteins, albumin, globulins, and high-density lipoprotein (HDL) concentration. Fish exposed to CPF also exhibited a high concentration of malondialdehyde while glutathione content, glutathione peroxidase, and catalase activities were significantly decreased in the liver, gills, brain, and intestine tissues. Moreover, exposure to CPF resulted in higher transcription of cytochrome P450 (CYP1A-P450) gene expression than the 1st group. Histopathological investigations revealed various degrees of pathological lesions in different organs like the liver, kidney, brain, spleen, and intestine tissues. Interestingly, dietary SP supplementation either alone or combined with BG significantly ameliorated the alterations mitigated by CPF-induced organ injuries and genotoxicity. Therefore, it could be concluded that SP or/and BG are able to induce the protective consequences on health status, immunity, and antioxidative response of African catfish exposed to CPF.
Keyphrases